↳ ITRS
↳ ITRStoIDPProof
z
eval(i, j) → Cond_eval(&&(&&(>=@z(-@z(i, j), 1@z), >=@z(nat, 0@z)), >@z(pos, 0@z)), i, j, nat, pos)
Cond_eval(TRUE, i, j, nat, pos) → eval(-@z(i, nat), +@z(j, pos))
eval(x0, x1)
Cond_eval(TRUE, x0, x1, x2, x3)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
z
eval(i, j) → Cond_eval(&&(&&(>=@z(-@z(i, j), 1@z), >=@z(nat, 0@z)), >@z(pos, 0@z)), i, j, nat, pos)
Cond_eval(TRUE, i, j, nat, pos) → eval(-@z(i, nat), +@z(j, pos))
(0) -> (1), if ((nat[0] →* nat[1])∧(pos[0] →* pos[1])∧(i[0] →* i[1])∧(j[0] →* j[1])∧(&&(&&(>=@z(-@z(i[0], j[0]), 1@z), >=@z(nat[0], 0@z)), >@z(pos[0], 0@z)) →* TRUE))
(1) -> (0), if ((+@z(j[1], pos[1]) →* j[0])∧(-@z(i[1], nat[1]) →* i[0]))
eval(x0, x1)
Cond_eval(TRUE, x0, x1, x2, x3)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
z
(0) -> (1), if ((nat[0] →* nat[1])∧(pos[0] →* pos[1])∧(i[0] →* i[1])∧(j[0] →* j[1])∧(&&(&&(>=@z(-@z(i[0], j[0]), 1@z), >=@z(nat[0], 0@z)), >@z(pos[0], 0@z)) →* TRUE))
(1) -> (0), if ((+@z(j[1], pos[1]) →* j[0])∧(-@z(i[1], nat[1]) →* i[0]))
eval(x0, x1)
Cond_eval(TRUE, x0, x1, x2, x3)
(1) (EVAL(i[0], j[0])≥NonInfC∧EVAL(i[0], j[0])≥COND_EVAL(&&(&&(>=@z(-@z(i[0], j[0]), 1@z), >=@z(nat[0], 0@z)), >@z(pos[0], 0@z)), i[0], j[0], nat[0], pos[0])∧(UIncreasing(COND_EVAL(&&(&&(>=@z(-@z(i[0], j[0]), 1@z), >=@z(nat[0], 0@z)), >@z(pos[0], 0@z)), i[0], j[0], nat[0], pos[0])), ≥))
(2) ((UIncreasing(COND_EVAL(&&(&&(>=@z(-@z(i[0], j[0]), 1@z), >=@z(nat[0], 0@z)), >@z(pos[0], 0@z)), i[0], j[0], nat[0], pos[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(3) ((UIncreasing(COND_EVAL(&&(&&(>=@z(-@z(i[0], j[0]), 1@z), >=@z(nat[0], 0@z)), >@z(pos[0], 0@z)), i[0], j[0], nat[0], pos[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) ((UIncreasing(COND_EVAL(&&(&&(>=@z(-@z(i[0], j[0]), 1@z), >=@z(nat[0], 0@z)), >@z(pos[0], 0@z)), i[0], j[0], nat[0], pos[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(5) (0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL(&&(&&(>=@z(-@z(i[0], j[0]), 1@z), >=@z(nat[0], 0@z)), >@z(pos[0], 0@z)), i[0], j[0], nat[0], pos[0])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0)
(6) (&&(&&(>=@z(-@z(i[0], j[0]), 1@z), >=@z(nat[0], 0@z)), >@z(pos[0], 0@z))=TRUE∧+@z(j[1], pos[1])=j[0]1∧i[0]=i[1]∧pos[0]=pos[1]∧j[0]=j[1]∧nat[0]=nat[1]∧-@z(i[1], nat[1])=i[0]1 ⇒ COND_EVAL(TRUE, i[1], j[1], nat[1], pos[1])≥NonInfC∧COND_EVAL(TRUE, i[1], j[1], nat[1], pos[1])≥EVAL(-@z(i[1], nat[1]), +@z(j[1], pos[1]))∧(UIncreasing(EVAL(-@z(i[1], nat[1]), +@z(j[1], pos[1]))), ≥))
(7) (>@z(pos[0], 0@z)=TRUE∧>=@z(-@z(i[0], j[0]), 1@z)=TRUE∧>=@z(nat[0], 0@z)=TRUE ⇒ COND_EVAL(TRUE, i[0], j[0], nat[0], pos[0])≥NonInfC∧COND_EVAL(TRUE, i[0], j[0], nat[0], pos[0])≥EVAL(-@z(i[0], nat[0]), +@z(j[0], pos[0]))∧(UIncreasing(EVAL(-@z(i[1], nat[1]), +@z(j[1], pos[1]))), ≥))
(8) (pos[0] + -1 ≥ 0∧-1 + i[0] + (-1)j[0] ≥ 0∧nat[0] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(i[1], nat[1]), +@z(j[1], pos[1]))), ≥)∧-1 + (-1)Bound + (-1)j[0] + i[0] ≥ 0∧-1 + pos[0] + nat[0] ≥ 0)
(9) (pos[0] + -1 ≥ 0∧-1 + i[0] + (-1)j[0] ≥ 0∧nat[0] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(i[1], nat[1]), +@z(j[1], pos[1]))), ≥)∧-1 + (-1)Bound + (-1)j[0] + i[0] ≥ 0∧-1 + pos[0] + nat[0] ≥ 0)
(10) (-1 + i[0] + (-1)j[0] ≥ 0∧pos[0] + -1 ≥ 0∧nat[0] ≥ 0 ⇒ -1 + (-1)Bound + (-1)j[0] + i[0] ≥ 0∧-1 + pos[0] + nat[0] ≥ 0∧(UIncreasing(EVAL(-@z(i[1], nat[1]), +@z(j[1], pos[1]))), ≥))
(11) (-1 + i[0] + (-1)j[0] ≥ 0∧pos[0] ≥ 0∧nat[0] ≥ 0 ⇒ -1 + (-1)Bound + (-1)j[0] + i[0] ≥ 0∧pos[0] + nat[0] ≥ 0∧(UIncreasing(EVAL(-@z(i[1], nat[1]), +@z(j[1], pos[1]))), ≥))
(12) (j[0] ≥ 0∧pos[0] ≥ 0∧nat[0] ≥ 0 ⇒ (-1)Bound + j[0] ≥ 0∧pos[0] + nat[0] ≥ 0∧(UIncreasing(EVAL(-@z(i[1], nat[1]), +@z(j[1], pos[1]))), ≥))
(13) (j[0] ≥ 0∧pos[0] ≥ 0∧nat[0] ≥ 0∧i[0] ≥ 0 ⇒ (-1)Bound + j[0] ≥ 0∧pos[0] + nat[0] ≥ 0∧(UIncreasing(EVAL(-@z(i[1], nat[1]), +@z(j[1], pos[1]))), ≥))
(14) (j[0] ≥ 0∧pos[0] ≥ 0∧nat[0] ≥ 0∧i[0] ≥ 0 ⇒ (-1)Bound + j[0] ≥ 0∧pos[0] + nat[0] ≥ 0∧(UIncreasing(EVAL(-@z(i[1], nat[1]), +@z(j[1], pos[1]))), ≥))
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(>=@z(x1, x2)) = -1
POL(0@z) = 0
POL(TRUE) = 0
POL(&&(x1, x2)) = 0
POL(EVAL(x1, x2)) = -1 + (-1)x2 + x1
POL(+@z(x1, x2)) = x1 + x2
POL(COND_EVAL(x1, x2, x3, x4, x5)) = -1 + (-1)x3 + x2 + (-1)x1
POL(FALSE) = 1
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
COND_EVAL(TRUE, i[1], j[1], nat[1], pos[1]) → EVAL(-@z(i[1], nat[1]), +@z(j[1], pos[1]))
COND_EVAL(TRUE, i[1], j[1], nat[1], pos[1]) → EVAL(-@z(i[1], nat[1]), +@z(j[1], pos[1]))
EVAL(i[0], j[0]) → COND_EVAL(&&(&&(>=@z(-@z(i[0], j[0]), 1@z), >=@z(nat[0], 0@z)), >@z(pos[0], 0@z)), i[0], j[0], nat[0], pos[0])
FALSE1 → &&(FALSE, FALSE)1
-@z1 ↔
&&(TRUE, TRUE)1 ↔ TRUE1
+@z1 ↔
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
z
eval(x0, x1)
Cond_eval(TRUE, x0, x1, x2, x3)